Hydronium-dominated ion transport in carbon-dioxide-saturated electrolytes at low salt concentrations in nanochannels.

نویسندگان

  • Kristian Lund Jensen
  • Jesper Toft Kristensen
  • Andrew Michael Crumrine
  • Mathias Bækbo Andersen
  • Henrik Bruus
  • Sumita Pennathur
چکیده

Nanochannel ion transport is known to be governed by surface charge at low ionic concentrations. In this paper, we show that this surface charge is typically dominated by hydronium ions arising from dissolution of ambient atmospheric carbon dioxide. Taking the hydronium ions into account, we model the nanochannel conductance at low salt concentrations and identify a conductance minimum before saturation at a value independent of salt concentration in the dilute limit. Via the Poisson-Boltzmann equation, our model self-consistently couples chemical-equilibrium dissociation models of the silica wall and of the electrolyte bulk, parametrized by the dissociation reaction constants. Experimental data with aqueous KCl solutions in 165-nm-high silica nanochannels are described well by our model, both with and without extra hydronium from added HCl.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surface-charge-governed ion transport in nanofluidic channels.

A study of ion transport in aqueous-filled silica channels as thin as 70 nm reveals a remarkable degree of conduction at low salt concentrations that departs strongly from bulk behavior: In the dilute limit, the electrical conductances of channels saturate at a value that is independent of both the salt concentration and the channel height. Our data are well described by an electrokinetic model...

متن کامل

Ion Transport in Silica Nanocomposite Electrolytes

The ion-transport properties of composite electrolytes composed of oligomers of poly~ethylene glycol! dimethyl ether, hydrophobic fumed silica, and Li~CF3SO2)2N ~LiTFSI! are investigated using nuclear magnetic resonance ~NMR!, electrophoretic NMR ~ENMR!, ac impedance spectroscopy, and rheology. The effects of fumed silica and salt concentration on ionic conductivity, diffusivity of ions and oli...

متن کامل

Nanofluidic ion transport through reconstructed layered materials.

Electrolytes confined in nanochannels with characteristic dimensions comparable to the Debye length show transport behaviors deviating from their bulk counterparts. Fabrication of nanofluidic devices typically relies on expensive lithography techniques or the use of sacrificial templates with sophisticated growth and processing steps. Here we demonstrate an alternative approach where unpreceden...

متن کامل

Experimental Investigation of Reactive Absorption of Ammonia and Carbon Dioxide by Carbonated Ammonia Solution

In this work, reactive absorption of gases in aqueous electrolyte solutions has been investigated resulting in the development of a procedure in order to calculate the concentrations of ionic and molecular species in the liquid phase. Two duplicate experiments were conducted to investigate simultaneous reactive absorption of ammonia and carbon dioxide in partially carbonated ammonia solutio...

متن کامل

Are specific buffer effects the new frontier of Hofmeister phenomena? Insights from lysozyme adsorption on ordered mesoporous silica

Hofmeister (ion specic) effects are phenomena related to the chemical nature of electrolytes. Although they are ubiquitous in all chemical, colloidal, and biological systems, they cannot be quantied in terms of the conventional physico-chemical theories (i.e. Debye–Hückel, DLVO, etc.). These are limit theories, based on electrostatics, and valid at innite dilution only. The gap between theor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 83 5 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2011